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AIlIIract-The inverse problem in nonlinear (incompressible) elastica theory, where the end positions and
inclinations rather than the forces and moment are specified, is considered. Based on the globally convergent
Chow-Yorke alJOrithm, a new homotopy method which is simple, accurate, stable, and efficient is developed.
For comparison, numerical results of some other simple approaches (e.g. Newton's method based on shooting
or finite differences, standard embedding) are presented. The new homotopy method does not require a good
initial estimate, and is guaranteed to have no singular points. The homotopy method is applied to the problem of
acircular elastica ring subjected to N symmetrical point loads, and numerical results are given for N '" 2. 3. 4.

INTRODUCTION

The study of large, nonlinear deftections of rods or beams is important in many engineering
problems, for example, frame structures [1, 2], leaf springs [3], cloth fabrics[4] and ftexible
linkages[5]. The theory for the nonlinear bending of thin rods, or elastica theory, was first
formulated by Euler. In his De Curvis Elastic;s [6] Euler stated that the curvature of a thin rod
at any point is proportional to the local moment applied. The elastica problem was subsequently
studied by many authors, including a noteworthy book[7] by Frisch-Fay in 1962. Only
incompressible elastica are considered here.

Figure 1shows an elastica subjected to terminal loads p', Q/ and moment M', The equation
governing its shape is

EI ~:' =M' +Q'x' _ P'y/.

Here EI is the ftexural rigidity, 8 is the local angle of inclination, and s' is the arc length along

y'
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Fig. I. The coordinate system.
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the curve. Thus, dOfds' is the local curvature. Since

dx'-::::cos 0
ds'

dy' .
ds' ::::sm 8.

Equation (I) can be written as

(2)

(3)

(4)d20
EId? :::: Q' cos 0 - P' sin 8.

If the loads and moment are known a priori, the solution to eqn (4) can be expressed as elliptic
functions[7]. Although the solution is analytic, the process is extremely tedious and the
accuracy is limited to the accuracy of the tables of elliptic functions. With the advent of the
computer, eqn (4) can now be easily integrated numerically as an initial value problem with the
initial conditions

dO M'
s' :::: 0, ds':::: EI' 8 :::: O. (5)

Using this method, one obtains the local inclination 8 as a function of s'. The Cartesian
positions x', y' can be found by integrating eqn (2) and (3).

The problem becomes extremely difficult even for numerical integration when the loads and
moment p', Q', M' are unknowns while the end positions and inclinations are given. The usual
method is to use shooting with Newton-Raphson iteration[8-12]. However, as pointed out by
Shoup[lO, II], Newton's method would not converge unless the initial guess is extremely close
to the correct solution. This is due to the fact that the elastica problem is very sensitive to end
conditions, especially for the more complicated shapes. Finite element methods have also been
applied to the elastica problem[l3-16]. Since a functional form is assumed for each element,
finite element solutions are approximate at best. Similar to the shooting method, a good initial
guess is required for convergence. In addition, the finite element program is extremely tedious
to write. In the next section, we shall investigate some of the simpler approaches to the
numerical solution of the elastica problem.

2. RESULTS OF VARIOUS NUMERICAL APPROACHES

Let us nondimensionalize our variables as follows:

x:::: x'fL, y:::: y'fL. t:::: s'fL

M:::: LM'fEI. p:::: UP'fEI, Q:::: UQ'fEI.

Here L is the total length of the elastica. Then eqns (lH3) become

d8:::: Qx-Py+M
dt
dx
dt :::: cos 0

dy . 8'dt:::: sm .

The boundary conditions are

x(O) :::: yeO) :::: 0(0) :::: 0

x(l):::: a, y(l):::: b, 0(1):::: c.

There are six conditions and six unknowns: x, y, 0, Q, P, M.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

2.1. Newton's method-shooting
Newton's method based on shooting is the simplest approach. Let v:::: (Q, P, M), and denote

the solution to the initial value problem eqns (8)-(11) by x(t; v), yet; v), 8(t; v). Then clearly
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eqns (8HI2) is equivalent to

31

F(v)= j~g~~~=: )=0. (13)
8(1; v)- c

Newton's method requires the Jacobian matrix DF(v), but that can be computed accurately
with no difficulty here. Partials like ax(1)/aQ can be easily computed by numerically solving a
larger nonlinear initial value problem as described in [241 and for this problem iJF/iJVj is only
slightly more expensive to obtain than F(v) itself.

For a =0, b =2/17, C=17, the exact solution is jj =(Q, P, M) =(0,0,17). Starting at v =
(0,0,1.85), Newton's method on eqn (13) failed to coverge, and this was typical behavior for
other boundary conditions and other starting points.

F(v) in eqn (13) is in effect computed by an integration (integrating an ordinary differential
equation). An approach based directly on numerical integration (quadrature) follows. The first
integral of eqns (8) and (II) gives

H(8,Q,P,M) =[M2+2Q sin 8 +2P(cos 8-1)]-U/2) =1/8.
Equations (9), (10) and (12) then yield the nonlinear system of equations

fH(8,Q,P,M) cos 8 d 8 - a =0

f H(8,Q,P,M,) sin 8 d 8 - b = 0 (l3A)

DH(8,Q,P,M)d 8-1 =0
equivalent to eqns (8HI2). H is not defined for all Q, P, M, which means a poor initial guess
may result in H becoming undefined. Even at the solution (Q, P, M), H may not be analytic on
the closed interval [0, c) (which happens if the rod is bell-shaped, for example). This latter fact
means that only an adaptive quadrature algorithm will be accurate, and such quadrature is very
expensive, especially if c is large. Furthermore, eqn (l3A) cannot handle the important cases
with c =O. For these reasons, eqn (l3A) is not competitive with eqn (13). Using the same data
as above, Newton's method on eqn (l3A) also failed.

There are many related locally convergent methods such as n-dimensional regula lals;[25],
n-dimensional secant, nonlinear Gauss-Siedel, Brown's method, Broyden's method and the
quasi-Newton BFGS method. None of these methods are truly globally convergent and their
domain of convergence is fairly small for the elastica problems considered here. To illustrate,
the widely used subrouting ZSYSTM (based on Brown's method) from the IMSL package
diverged for a = 0, b = 0.9, c = 17 starting from the solution for a =0, b = 0.8, c = 17, and this
was typical behavior. The very sophisticated quasi-newton code HYBRJ, developed at Argonne
National Laboratory[26], also failed in the above situation. However, HYBRJ did converge in
about 40% of the cases tried, which was far better than any other locally convergent method.

2.2. Newton's method-finite difference approximation
Equation (8) is equivalent to

=0

211 cos II
211 cos 82
211 cos 83

211 cos 8._ 1

211 cos 8.-Q

O(t) = Qcos 8(t) - P sin 8(t), (14)

which eliminates the constant M. Let h =I/(n +1), ti =ih, i =0, ... , n +1, and Xj, Yj, 8j be
approximadons to x(tj), y(tj), 8(1;) respectively. Using a second order accurate finite difference
approximation to eqns (9HI2), (14) yields the equations

(

o~ -1 0 XI
o -I 0 X2
lOX)

+

O 0 -I X.- 1

lOX.
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-I 0

0
Y, 2h sin 8,

0 -I Y2 2h sin 82

1 0 Y1 2h sin 81

+ =0

0 0 -I Y.- 1 2h sin 8._ 1

1 0 Y. 2h sin 8. - b

-I 0 8, r h2(Qcos 8,- P sin B.)
2 -I 0 82 h2(Q cos B2 - P sin B2)

-I 2 B1

+ =0

0
B.-1 h2(Q cos B.-1 - P sin 8.-1}

-I
B. h:l(Qcos 8. - P sin 8.)-c

581- 482+83+h2Q =0
58" -48"_1 +8,,-2 - 2c +h2 (Q COS C - P sin c) =0

which can be written as

G(z) =0, (15)

where

z=(X), ... ,X"' Yh ••• , Y", 8" ... , 811, P, Q).

Solving eqn (15) by Newton's method is even more difficult than solving eqn (13), because the
entire shape of the rod as well as P and Q must be estimated in the initial guess. For the
solution to eqn (15) to be a reasonably accurate approximation to the true continuous solution, n
must be at least 9, which means eqn (15) must be at least 29 dimensional. For a =0, b =2/11,
C= 11, n =9, starting at z =0 Newton's method failed. The size of eqn (15) coupled with the
burden of finding a good initial z make solving (15) by Newton's method impractical.

2.3. Imbedding-shooting
A more sophisticated approach is to consider the family of problems

"'..,(A,v)=AF(v)+(1-A)(v-w)=O (16)

for OSA S 1, where w E E3 is fixed and F(v) is given by eqn (13). The imbedding algorithm is
to increase Afrom 0 to 1and track the solutions of "',. =0 from w (at A=0) to the solution i5 of
F(v) = 0 (at A= 1). This approachfails if ",,.(A, v) =0 has no solution or if the Jacobian matrix
Dv",..(A, v) is singular, because then the solutions cannot be "continued" beyond A=i.

The exact solution for a =0.98584269, b =0.14607461, c=- 0.06339365 is Ii =(- 2, 1, 1).
Starting at w= (-3,1.5,1.5) the Jacobian matrix D.",..,(A, v) becomes sing'ular at A= 0.12 and
therefore imbedding fails. For some problems changing the sign of some components of F(v)
helps, but imbedding failed for every problem of the form diag (± 1, ± 1, ± 1) F(v).

2.4. Imbedding-finite difference approximation
The imbedding family here is

O..,(A, z) =AG(z)+(1- '\)(z- w) =0, (17)

where G(z) are the finite difference equations given by eqn (15) and we £311+2. For a =0,
b =2/11, C = 11 and n =9, the exact solution is

z=(Sin 0.111 , ... , sin 0.911, 1- cos 0.111 , ... , 1- cos 0.911,0.111, ... ,0.911, 0,0).
11 11 11 11

For the starting point w =0, the Jacobian matrix D.O,.(A, z) becomes singular at A= 0.99925, and
imbedding again fails. For some boundary conditions and starting points, IlzlI'" or; as A... ].
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(18)

(19)

2.5. Chow- Yorke algorithm-shuoting
The Chow-Yorke algorithm is a homotopy method using the same homotopy map as eqn

(16), but differs from standard imbedding in several important respects. It is globally convergent
with probability one for certain classes of problems[t7-t9] and is unaffected by "singular
points". The computer implementation of the Chow-Yorke algorithm is very different from that
of the typical imbedding algorithm. See Watson[t9) for the theoretical background and details
of the computer implementation. Basically the supporting theory says that for almost all w,
there is a zero curve 'Y of "'..(A, v), emanating from (0, w), along which the Jacobian matrix Dt/J.,
(with respect to both Aand v) has full rank. 'Y either reaches a zero 6 of F (at A=I) or wanders
off to infinity, The Chow-Yorke algorithm is to track 'Y, where A and v are both dependent
variables along 'Y.

Using the same boundary conditions and starting point as in Section 2.3, the Chow-Yorke
algorithm also failed. 'Y turns back at A =0.12 and goes to infinity with A~O, IIvll~ro.

2.6. Chow- Yorke algorithm-finite difference approximation
The theory is the same as in Section 2.5, except the homotopy map eqn (17) is used. Using

the same boundary conditions and starting point as in Section 2.4, the Chow-Yorke algorithm
again failed. The zero curve 'Y goes off to infinity (lIzll~oo) and either A~O or A~ t, depending
on the problem and starting point. The Chow-Yorke algorithm does converge for n =4
(h ::: O.2),but the mesh is too coarse for the solution to be of much value.

2.7. A homotopy method based on Chow-Yorke algorithm
Let v::: (Q, P, M), W =(Wit W2' w,), and x(t; v), yet; v), B(t; v) be the same as in Section

2.1. Now define p.,:[O, l)xE'~ E' by

!XO; v)-[Aa +(1 -A)W.J)
p..(A, v) =pew, A, v) = YO; v) - [Ab +(1- A)W2]

BO; v)-{Ac+O-A)w,)

The Chow-Yorke algorithm is based on the following fact[19]:

Lemma. Suppose that the Jacobian matrix Dp(w, A, v) of p has full rank on p-I(O). Then for
almost all W E E3 (in the sense of Lebesgue measure), the Jacobian matrix Dp., (A, v) of Pw also
has full rank on p;I(O).

The implication of this Lemma is that the set of zeros of POI in [0,1) x E3 consists of smooth,
disjoint curves whose only endpoints must lie in to} x E3 or {l} x E3. Furthermore the Jacobian
matrix Dp.. has full rank along these curves. Thus if

Pw(O, 6) =0

there exists a smooth curve 'Y, emanating from (0, 6), along which the Jacobian matrix Dp". has
full rank. 'Y either reaches A= I, or wanders off to infinity. The above statements hold with
probability one, in the sense of holding for almost all w.

The proposed homotopy method is as follows: Choose a pair w, vsuch that P..(O, v) =0; this
is easily done. Then track the zero curve 'Y of Pw emanating from (0, v) until A::: I. If
Pw(t, v) =0, then from eqn (18) v solves the boundary value problem eqns (8)-(12). The zero
curve 'Y is the trajectory of the initial value problem

d [o&(A,V) ]f:~]ds p,.(A(s), v(s» = aA' D.p.,(A, v) l:~ =0

II(:~, ::)112 =0 (20)

'\(0) =0, v(O) = i5 (21)

where s is the arc length aJOIlS 'Y. Equations (9)-(21) are best solved by a variable step, variable
55 Vol. 17, No. l-e
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order Adams method as described in Shampine [20]. Note that the derivative (dA/ds, dvlds) is
only implicitly defined by eqns (19H20), and some nontrivial numerical linear algebra is required
for its calculation. The details of calculating (dAlds, dv/ds) and for solving eqns (19H21) are
similar to those of the fixed point algorithm in Watson(19).

The Jacobian matrix D"p",(A, v) involves partials like ax(1)/aQ. These could be approximated
by finite differences, but the following procedure is more accurate and efficient. Let

u(t) =(x(t), y(t), 6(t), ax(t)/aQ, ay(t)/aQ. a6(t)/aQ).

Then the solution to the initial value problem

"\ = cos U3

"2 =sin U3

"3 = Qu I - PU2 +M
"4 =- U6 sin U3

"5 =U6COS U3

"6 =QU4+UI - Pus
u(O) =0 (22)

gives, e.g. U4(l) = ax(1)/aQ. Similarly for P and M.
An important point is that the homotopy map eqn (18) is not just an imbedding. A does not

have to increase monotonically from 0 to I along 1 and there are never any "singular points"
along 1. Because of the full rank of the Jacobian matrix and the way in which 'Y is tracked,
"turning points" pose no difficulties whatsoever.

In the next section this homotopy method based on the Chow-Yorke algorithm is applied to
a practical problem in elastica theory.

3. THE CIRCULAR ELASTICA RING SUBJECTED TO
SYMMETRIC POINT LOADS

3.1. Two loads
Consider a naturally straight elastica rod of length 2L bent into a circular ring. Figure 2

shows such a ring subjected to two symmetric point loads. This problem has been studied
previously by several authors[21-23] by the analytical method using elliptic functions. There
are two disadvantages using this method. Firstly the accuracy of the results cannot be better
than the accuracy of the elliptic functions used. Secondly, the variables b, Q, M are determined
aposteriori, i.e. cannot be controlled. Table 1(a) shows typical results obtained by this method
published by Frisch-Fay (7). Also shown in Table I(a) are those obtained by our homotopy
algorithm. All our figures are correct while traditional method gives only two figure accuracy.
Since we can control our parameters, Table 1(b) shows the results for given b, using the
present method.

20

20

(0) (bl Ie)

Fig. 2. Deformation of a ring by two loads (a) compression. (b) free. (c) extension.
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Table I. Deformation of a ring by two loads
Table I(a).

Q M
b Ret!7] Present method Ref. 17] Present method

0.o00ooo 39.68 39.650635 -6.055263
0.239369 25.66 25.619315 -2.985 -2.986823
0.457730 13.72 13.703192 0.000 0.011793
0.709857 -9.475 -9.429116 4.891 4.888416
0.806597 -34.54 -34.359221 8.366 8.354052

Table I(b).

b Q M

0 39.65063 -6.055263
0.1 33.33404 -4.766169
0.2 27.72253 -3.492393
0.3 22.42202 -2.195502
0.4 17.04025 -.830645
0.5 11.05332 0.665996
0.6 3.515156 2.404911
2/", 0 ",

0.7 -7.894501 4.625114
0.8 -31.70085 8.040393
0.9 -137.2019 16.56551
1.0 -oc "

F

(J

F

(23)

F

Fig. 3. Schematic diagram for N symmetric loads.

In what follows. we shall generate the results for the deformation of a circular elastica ring
by more than two symmetric loads. To the authors' knowledge these results have never been
published before.

3.2. More than two loads
Figure 3 shows a circular elastica ring of free radius R subjected to N symmetrical loads F'

Set L = 211'RIN and normalize all lengths. forces, moments as in eqns (6H7). The problem then
reduces to eqns (8H12) with

• 211' ( 211') 211'a = K SID N' b =K I - cos N .C =N

where K is the distance from the center of symmetry to the point of load application. For
given K one can integrate for the forces and moment Q. P, and M. Considering one segment of
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the ring 0:5 8 :5 211'1 N, the normalized force F can be calculated as follows

L
2
P' :: p:: 2(Q2+ p2)\!2 b(a2+b2t 0 !2)

EI

Using symmetry which dictates Pb =Qa one obtains the simple result

F::2Q.

(24)

(25)

The numerical values for force P as a function of distance K for N =3 and N = 4 are
tabulated on Tables 2 and 3. Figure 4 shows some of the deformation configurations for four
loads. It is obvious that the complicated geometries are unsuitable for a finite element
formulation.

Table 2. Deformationofa ring by three Table 3. Deformation of a ring by
loads four loads

K F M K F M

0 93.2S454 -10.381892 0 86.80169 -12.355771
0.05 82.67937 -9.199388 0.05 79.07513 -11.346689
0.10 73.63733 -8.071149 0.10 72.41183 -10.389538
0.15 65.63493 -6.971627 0.15 66j4758 -9.468586
0.20 58.28358 -5.877444 0.20 61.28057 -8.570414
0.25 51.22793 -4.763989 0.25 56.44677 -7.682686
0.30 44.06862 -3.601012 0.30 51.90093 -6.793016
0.35 36.23102 -2.344733 0.35 47.49829 -5.887680
0.40 26.63785 -0.919440 0.40 43.07053 -4.949739
0.45 12.56279 0.8390613 0.45 38.38345 -3.955757
3/211' 0 211'/3 0.50 33.04092 -2.868894
OjO -16.93792 3.448575 0.55 26.20991 -1.621358
!lV3 -:x: :x: 0.60 15.53799 -0.055590

2/'IT 0 ."f2
0.65 -10.66333 2.407977
0.68 -88.27135 6.051593
11V2 -0< :x:

(a) lb) lc)

Fia. 4. Integrated deformation shapes for 4 symmetric loads (a) K =0.68, (b) K =0.4, (c) K =0.1.
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